If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+9d-400=0
a = 1; b = 9; c = -400;
Δ = b2-4ac
Δ = 92-4·1·(-400)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-41}{2*1}=\frac{-50}{2} =-25 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+41}{2*1}=\frac{32}{2} =16 $
| (t)=-4.9t^2+16t+9 | | 7h-10=340 | | -3k=-153 | | 4^(3-x)=1/16 | | 5f+5=180 | | .3x+.5(.2x+.4)=3.4 | | y+2=70 | | 12=4=4x | | 100-n=41 | | 6/77=x/92 | | 6k-1=65 | | 6/3+(5+x)=5(x-7) | | -3=5=x/2 | | 10=12x-14 | | 2(3x+4=2x-8 | | -7+6n=9n+1 | | (4x+3)+(-3x+8)=10 | | (4x+3)+(-3x+8)=0 | | 7t+11=4t+14 | | p+77=12p | | 0.6=k0.02 | | 5b+15=3b+17 | | t,3=10 | | 11w-77=5w-29 | | (2x+10)-(x+3)=(7x+4) | | 4v-84=v | | 18x/4=6 | | 6x30=42 | | 3m²+15=63 | | y+0.5(-3-2y)=3 | | 4=(3x-7)5=(5x-21) | | -4-(x/3)=-6 |